Cooperative Multi-Robot Control for Target Tracking with Onboard Sensing

Karol Hausman†, Jörg Müller, Abishek Hariharan, Nora Ayanian, and Gaurav S. Sukhatme
Department of Computer Science, University of Southern California, Los Angeles, CA, USA

Abstract
We consider the cooperative control of a team of robots to estimate the position of a moving target using onboard sensing. In this setting, robots are required to estimate their positions using relative onboard sensing while concurrently tracking the target. Our probabilistic localization and control method takes into account the motion and sensing capabilities of the individual robots to minimize the expected future uncertainty of the target position. Two measures of uncertainty are extensively evaluated and compared: mutual information and the trace of the Extended Kalman Filter covariance. Our approach reasons about multiple possible sensing topologies and incorporates an efficient topology switching technique to generate locally optimal controls in polynomial time complexity. Simulations illustrate the performance of our approach and prove its flexibility in finding suitable sensing topologies depending on the limited sensing capabilities of the robots and the movements of the target. Furthermore, we demonstrate the applicability of our method in various experiments with single and multiple quadrotor robots tracking a ground vehicle in an indoor environment.

Keywords
Cooperative multi-robot control; target tracking; sensor-based navigation; sensing topology switching

1. Introduction

Using multiple robots to track a moving target is potentially beneficial because of the reduction in tracking uncertainty, increased coverage, and robustness to failure. Two problems arise immediately. First, these objectives are often at odds, for example, the configuration of the robots that lead to the lowest uncertainty estimates of target pose may not be the best if one or more robots is disabled. Second, the robots themselves are often poorly localized, for example, only a few may have access to GPS, and the rest may be limited to a combination of onboard inertial sensing, visual odometry, and relative range/bearing measurements to estimate their poses relative to each other.

As an example, consider the unmapped interior of a building shown in Fig. [1] where moving targets need to be tracked using a team of quadrotors. Some of the quadrotors have access to GPS (e.g., near external windows), the others do not,
Figure 1. A collaborative target tracking task in which the robots have to establish an appropriate relative sensing topology to localize themselves and track one or multiple targets. In this depiction, five quadrotors are tasked with tracking two ground robots. In the configuration shown, two quadrotors have access to GPS. The remaining three quadrotors do not. How should such a system coordinate its motion to ensure that it is in a configuration that results in the least uncertainty in the pose of the targets?

but can track each other and the target. How should such a system coordinate its motion such that it always maintains a configuration that results in the least uncertainty in the target pose?

2. Related Work

In the domain of cooperative control, small unmanned aerial vehicles (UAVs) have recently become prominent and several well-constructed testbeds have been established for multi-robot control and aerobatics with motion capture state estimates (Lupashin et al., 2010; Michael et al., 2010; Valenti et al., 2006). For cooperative target tracking with onboard sensors, many authors considered centralized (Charrow et al., 2014; Pink et al., 2010), decentralized (Adamey and Ozguner, 2012; Lima et al., 2014; Mottaghi and Vaughan, 2006; Ong et al., 2006), and distributed (Jung and Sukhatme, 2002, 2006; Wang and Gu, 2012) approaches to multi-robot control in aerial and ground settings. Lima et al. (2014) reduce the uncertainty of the tracking target while keeping robots in the pre-set formation. However, they focus on decentralization and do not perform a joint state estimation of the target and robot positions. As opposed to our work, these methods only estimate the pose of the target and ignore the uncertainty in the robots’ poses. Such methods apply only to scenarios in which the poses of the robots are known, e.g., from an external system, or they are independently localized with high accuracy.

There exist multiple cooperative control approaches that tackle the problem of target localization (Grocholsky et al., 2003, 2006; Hoffmann and Tomlin, 2010; Stump et al., 2009). Grocholsky et al. (2006) contributes an information-theoretic, distributed and coordinated approach to multi-robot systems, which is based on one of the methods in decentralized data fusion (DDF) - the information filter (Manyika and Durrant-Whyte, 1995). This technique enables robots to fuse information in a fully distributed way, which is an undisputed advantage in a multi-robot scenario. A similar method is used by Grocholsky et al. (2003) and Stump et al. (2009), which confirms the applicability of this approach. The cost function chosen for the control is similar for all of the above works. The authors use either the mutual information gain or the instantaneous mutual information rate, which can also be computed in a distributed fashion. One of the simplifications made by these approaches,
however, is to limit the robots to planar movements and disable the possibility that agents can be perceived by other agents. In our work, we relax these assumptions and introduce sensing topologies that help us cope with occlusions between different levels of agents’ altitudes. In addition, while generating controls, we take into account not only the uncertainty of the target, but also the uncertainty of the sensing agents. Moreover, we introduce a time horizon that enables robots larger lookahead for the optimized controls, which was not the case in the papers above.

There are other approaches that, in addition to looking for the most informative controls, tackle the problem of non-linearities in the state estimate. Stump et al. (2009) make the state estimation equations linear using a non-linear embedding that extends the state space, whereas Hoffmann and Tomlin (2010) and Julian et al. (2012) use non-parametric techniques such as popular particle filters. In this work we use standard state estimation procedures as our focus is on the control optimization and sensing topologies in the multi-robot scenario.

According to the well-established definitions of cooperative and coordinated approaches (Grocholsky, 2002), we believe that our approach can be classified as coordinated and centralized. While in this article we focus on sensing topologies and efficient topology switching, we are aware of drawbacks of centralized approaches, such as large communication bandwidth constraints or a single point of failure. Therefore, we plan to shift towards distributed way of solving the multi-robot target tracking task in the future work.

Ahmad and Lima (2013) robustly track a target, taking into account the individual robot’s self-localization by weighting the confidence of observations using the robots’ localization uncertainty. A similar approach has been proposed by Zhou and Roumeliotis (2011), where the authors evaluate different sensor models and concentrate on the non-convex optimization of the objective function. In contrast to our approach, they decouple the target tracking from the robot’s localization, which does not account for the (usually high) correlation of the target’s and the robots’ position estimates.

Chang et al. (2014) presented a localization method that is able to dynamically switch between centralized and decentralized information sharing based on the communication conditions. To robustly perform cooperative multi-robot localization using only onboard sensors (such as with the popular Kalman filter (Mourikis and Roumeliotis, 2006)), several optimization-based localization approaches have been proposed (Ahmad et al., 2013; Howard et al., 2002; Huang et al., 2013). However, the maximum-likelihood state estimates provided by these approaches do not allow for direct minimization of the uncertainty associated with the estimated target pose.

3. Multi-robot Control with Topology Switching

3.1. Optimization-based Control for Uncertainty Minimization

We propose a probabilistic method for cooperative control for target tracking. The objective of our control approach is to maintain optimal position estimates for the target given the controlled team of robots. At each time step k, we aim at finding the optimal joint controls u_k^* that minimize the expected future uncertainty about the target position.

Thus, we formulate the selection of controls as an optimization problem and apply standard nonlinear optimization\(^1\) to find the locally optimal control

$$ u_k^* = \arg\min_{u \in \mathcal{U}} \left(c_k(u) + \left(\mathbb{E} \right) \right) $$

with a twofold cost function, where \mathcal{U} is the joint control space of the robots (which is explained in detail in Sec. 4 and Sec. 5). The function c_k evaluates the expected future uncertainty of the target position. The additional cost d_k accounts for the future distance between the individual robots and results in a repelling force for explicit collision avoidance.

\(^1\) We use the NLopt nonlinear-optimization package: http://ab-initio.mit.edu/nlopt
We use an Extended Kalman Filter (EKF) as described in Sec. 3.3 to efficiently and robustly estimate the joint pose of all robots and the target from imprecisely executed motion control commands and noisy measurements similar to (Martinelli et al., 2005). To obtain the cost \(c_k(u) \), we start from the current EKF state estimate, which is represented by the mean \(\hat{x}_k \) and the covariance \(\Sigma_k \), and compute the expected future a priori tracking covariances \(\Sigma_{k+1}(u), \ldots, \Sigma_{k+h}(u) \) under the control candidate \(u \). In particular, we compute the expected future covariances by performing \(h \) lookahead EKF cycles during which the joint control candidate \(u \) is constantly applied and the availability of measurements and the corresponding measurement covariances are evaluated given the expected mean states \(\hat{x}_{k+i} \).

We measure the target tracking uncertainty using the marginal covariance of the target state, which is obtained as the corresponding block of the covariance of the joint EKF. The optimal joint controls are determined in every time step in order to incorporate the most recent observations in the framework. Throughout the experiments the algorithm ran with a lookahead horizon of \(h = 10 \).

3.2. Measure of Uncertainty

The mutual information of the state and the measurements and controls

\[
I(x(t); z, u) = H(x(t)) - H(x(t) | z, u)
\]

(2)

can be computed as the entropy reduction. The entropy of the Gaussian posterior is

\[
H(x(t) | z, u) = \frac{k}{2} (1 + \ln(2\pi)) + \frac{1}{2} \ln(|\Sigma(t)|).
\]

(3)

Since the unconditional entropy \(H(x(t)) \) and the first summand of the conditional entropy are not dependent on the controls, we can ignore these parts in \(U \). Furthermore, the logarithm is a monotonically increasing function, such that we can define the mutual information-based uncertainty measure as

\[
U_m(\Sigma(t)) = |\Sigma(t)|.
\]

(4)

In the context of mobile robot navigation, the trace of the covariance is often used as a measure of the localization uncertainty (Lerner et al., 2007). As Beinhofer et al. (2013) elaborate, minimizing the trace of the covariance results in minimizing the uncertainty about the state for all its individual dimensions. We therefore propose to use the trace of the marginal covariance

\[
U_t(\Sigma(t)) = \text{tr}(\Sigma(t))
\]

(5)

as an alternative measure of uncertainty.

While the function \(U_m \) corresponds to the product of the eigenvalues of the marginal covariance, the function \(U_t \) evaluates the sum of the eigenvalues (Golub and van Loan, 1996). Hence, the former substantially rewards a single small eigenvalue and therefore results in a small function value even for degenerate (very stretched) covariance ellipses with a single small eigenvalue. These still have a high uncertainty in other dimensions and therefore could result in a high position error of the state estimate. In contrast, the latter considers the sum of the eigenvalues and therefore also penalizes these degenerate covariances.

It is worth noting that recent findings in cooperative multi-robot scenarios (Grocholsky et al., 2003, 2006; Stump et al., 2009) use the mutual information rate (which is equivalent to the determinant-of-the-covariance method) in the cost function. Nevertheless, given the reasons presented above, the results from the simulation experiments and the reasons...
shown by Beinhofer et al. (2013), we would argue that our technique, compared to the mutual information approach, copes better with degenerate covariances and equally well with circular covariances.

3.3. Extended Kalman Filter (EKF) for Joint State Estimation

The EKF recursively fuses all controls $u_{1:k}$ and all absolute or relative measurements $z_{1:k}$ up to time k.

It maintains the state posterior probability

$$p(x_k | z_{1:k}, u_{1:k}) = \mathcal{N}(\hat{x}_k, \Sigma_k)$$

of the joint state x_k at time step k as a Gaussian with mean \hat{x}_k and covariance Σ_k.

The stochastic motion functions

$$x_{k+1}^{(i)} = f^{(i)}(x_k^{(i)}, u_k^{(i)}) + \delta_k^{(i)},$$

given the control command u and the white Gaussian noise δ of the individual robots can be naturally combined in the joint state estimation (Martinelli et al., 2005). We consider two types of sensors and corresponding measurements: absolute (global) measurements, e.g., GPS, and relative measurements between two robots or a robot and the target, e.g., distance or relative pose measurements. While the stochastic measurement functions of absolute sensors are

$$z_k^{(i)} = h^{(i)}(x_k^{(i)}) + \varepsilon_k^{(i)},$$

the corresponding relative sensors are modeled by the stochastic function

$$z_k^{(i,j)} = h^{(i,j)}(x_k^{(i)}, x_j^{(j)}) + \varepsilon_k^{(i,j)}.$$

All measurement functions can be naturally extended for the joint state (Martinelli et al., 2005). Since the measurements are assumed to be conditionally independent given the joint state (Thrun et al., 2005), individual measurements can be fused separately into the belief of the EKF.

The motion and measurement functions, their Jacobians, and the noise covariances are provided by the motion and sensor model of each entity, respectively. As a motion function in general target tracking.

3.4. Sensing Topologies

3.5. Sensing Topology Switching

During target tracking, we allow switching between neighboring topologies. We consider two sensing topologies G_1, G_2 as neighbors $G_1 \in \mathcal{N}(G_2)$ and $G_2 \in \mathcal{N}(G_1)$ if the team can transition between them by moving one robot up or down by one level. Depending on the occupation of the individual levels, such a movement can result in adding a new level in the top or bottom or removing a level that has been vacated.

In each control cycle, we consider the current sensing topology G_{cur} and all its neighbors $G \in \mathcal{N}(G_{\text{cur}})$ as potential future topologies. For each neighbor topology G, we evaluate the optimal control u_k^G and the corresponding cost given its set of expected measurements. We then select the topology G^* and corresponding control $u_k^{G^*}$ that results in the lowest cost according to Eq. (10).

$$G^* = \arg\min_{G \in \mathcal{N}(G_{\text{cur}})} u_k^G$$

(10)
3.6. Complexity Analysis

The asymptotic complexity of our approach with \(n \) robots is determined as follows. We evaluate \(O(n) \) neighbor sensing topologies, which reduces the computational complexity from exponential (for all topologies) to real-time capable linear complexity. For each considered topology, we assume that the optimization (e.g., gradient descent with a constant number of iterations) runs \(O(n) \) evaluations of the cost function. Each evaluation of the cost functions involves \(h \) cycles of the EKF, which is \(O(n^3) \), such that the overall complexity of our approach is \(O(n^5) \).

4. Simulation Experiments

4.1. Experimental Setup

We evaluated our approach in a number of simulations (see, for example, Fig. 4). We consider a quadrotor and a target as points moving in 2D space controlled by velocity commands \([v_x, v_y]\), and we employ the Kalman filter to estimate their \([x, y]^T\) positions. The setup also includes an absolute global sensor (similar to GPS), which is located at the origin \([0, 0]\). Omnidirectional 2D cameras with a limited sensor range provide relative positions of observed objects. We assume that the measurement noise of the GPS and the cameras increases quadratically with the distance from the center of view. The target is programmed to execute one of two predefined trajectories: a simple spiral and a figure eight that both start at the origin. It is important to note that the generated controls of each of the quadrotors are smooth; however, the motion of the robots might appear jittery as we add uncorrelated Gaussian noise to the motion execution to make the simulation experiments more realistic.

4.2. Comparison of Uncertainty Measures

In a first set of experiments, we evaluated the influence of the minimized measure of uncertainty on the target tracking accuracy and the estimation uncertainty. In our standard setup with relative position sensing, all covariances are circular and therefore minimizing the determinant of such a covariance is equivalent to minimizing its trace.

When using a range-only sensor model, covariances can get stretched, which reveals important differences between the two measures of uncertainty. Fig. 3 shows an example run and the error and uncertainty statistics of both measures using the range-only sensor model. The robots under mutual information-based control lose track of the target, because the stretched target covariances represent a high spatial uncertainty that is not sufficiently penalized by the mutual-information-based cost function. In contrast, the trace-based control enables reliable tracking. Indeed, the target tracking position error under trace-based control is significantly lower than the one under mutual information-based control. At the bottom part of Fig. 3 which corresponds to the trace-based uncertainty measure, one can also observe a peak around time step 90 of the execution. This peak corresponds to the time step just before the topology is switched. It is worth noting that, due to the switch of the topology, the trace-based method is able to maintain significantly lower position error of the target than the mutual-information-based approach. This shows that penalizing degenerate (stretched) covariances, such as the trace-based measure does, is more effective. We therefore only use the trace of the target covariance as a measure of uncertainty in the following experiments.

4.3. Topology Switching

An example of the simulation results is shown in Fig. 4. While the controls selected by the approach were quite smooth, the zigzag movements of the robots were due to the simulated motion noise. Each experiment started in one of the simplest
Figure 2.
Figure 3. The comparison of the target tracking accuracy and uncertainty with range-only sensing for the mutual information-based control (top) and the trace-based control (bottom). Left: an exemplar trajectory of the target (red), which is tracked by 5 robots. Actual trajectories are shown as thick dots connected by lines. The EKF state estimate is visualized as the mean (+) and every fifth 1σ covariance ellipse is shown. Right: evaluation measures with 95% confidence regions (averaged over 10 simulated runs). The trace-based measure significantly outperforms the mutual information-based measure since it penalizes stretched covariances.
Figure 4. Simulation results with 5 robots. Left: the current topology selected by our approach. The links represent the actual measurements where the thickness of each link corresponds to the information provided by the measurement (the inverse of the measurement standard deviation). Right: The trajectory and the state estimates of the EKF. The actual trajectory is shown as thick dots connected by a solid line. The EKF means are indicated by ‘+’ and the covariance is shown for the current state.
topologies, in which the robots were arranged as a string, each residing on its own level. Our approach locally modified the topology during the first steps and converged to a topology with two levels (Fig. 4, row 1). As the target moved away from the GPS signal at the origin, the limited measurement range causes dropouts in this topology (row 2) and our approach introduced an additional robot level (row 3). Here, our approach exploited the currently low position uncertainty of all robots and assigned three robots to the lowest level to get robust information on the target position. Note that the simulated point-like robots provide uncorrelated relative position measurements and therefore do not additionally benefit from distributing themselves around the target. However, they do benefit from staying close to the robots/sensors observing them, such that the chain of robots tends to stay close to the global sensor at the origin. As the target moved back towards the GPS, our approach switched back to the two-level topology (row 4). Our approach similarly handled the left part of the trajectory.

Further simulations with 2 to 30 robots and different sensor and motion models confirmed our assumption that the selected topologies substantially depend on the limitations of the sensor model (here: the measurement range). With unlimited measurement range, the topology quickly converged to a one and switching to different topologies only appeared as transient effects.

Fig. 5 shows sets of experiments with 2, 5, and 8 robots. While more robots obviously result in a higher accuracy and a lower uncertainty, the corresponding dependency is not linear. Another insight is the difference between the number of topology levels in the first loop and the second loop of the figure eight.

4.4. Kidnapping

We evaluated our approach in an additional set of experiments under kidnapping of individual robots. Each kidnapping event occurs at a random time step, picks a random robot, and teleports it to a position that is uniformly sampled from the scene. Furthermore, the corresponding marginal covariance is set to a diagonal matrix with reasonably high eigenvalues.

Fig. 6 shows an example run with two kidnappings. Once the purple robot is kidnapped (Fig. 6, top) it does not observe the target anymore. Consequently, it moves back towards the target until the yellow robot gets kidnapped (Fig. 6, center). By that time, the sensing topology has changed in a way such that the purple and the yellow robot are in the level closest to the GPS. After a few more time steps (Fig. 6, bottom), the sensing topology converged to a configuration (see Fig. 4) in the case where the target is far away from the GPS. The EKF state estimation method used in our approach is not able to explicitly handle robot kidnapping. However, in our case the EKF gets ’informed’ about the kidnapping event and handles it by largely increasing the marginal covariance of the kidnapped robot.

Fig. 7 shows the results of experiments without and with kidnapping. While the target tracking error and the uncertainty are significantly bigger in the kidnapping experiments, there is no significant difference in the number of topology levels. The slightly bigger confidence regions in case of the kidnapping experiments indicate that kidnapping triggers topology changes. However, there is no significant difference in the number of topology levels between the kidnapping and the non-kidnapping scenario. This indicates that changes in the topology caused by kidnapping are mostly transient.

5. Real Robot Experiments

5.1. Experimental Setup

We tested the approach with Parrot AR.Drone quadrotor UAVs shown in Fig. 10. The setup consists of a Microsoft Kinect sensor that was attached to the ceiling in approx. 3.4 m height in an approx. 6 × 5 m² room. One or two Parrot AR.Drone quadrotors are observed by the camera on the ceiling and track a TurtleBot 2 robot that serves as a moving target. The AR.Drones are equipped with an inertial measurement unit (IMU), an ultrasound altimeter, two cameras, and WiFi communication. The down-looking camera is used internally to estimate the visual odometry, which is fused with
Figure 5. Target tracking results for 2 (top), 5 (middle), and 8 (bottom) robots. Left: an example trajectory. Right: statistics over 10 runs. More robots result in a higher accuracy and a lower uncertainty, the corresponding dependency is not linear.
Figure 6. Simulation results with 5 robots, two of them are kidnapped. Left: the current topology selected by our approach. Right: the trajectory and the state estimates of the EKF. The actual trajectory is shown as thick dots connected by a solid line. The EKF means are indicated by ‘+’ and the covariance is shown for the current state. Long pink and yellow lines indicate the kidnapping event of the robot (the robot appears at a different position). Even though two robots are kidnapped, the system returns to the most beneficial topology. The time steps were chosen to show the kidnapping event as well as the recovery behavior of the system.
Figure 7. Comparison between kidnapping (top) and without kidnapping (bottom) scenarios. Top-left: example trajectory. Bottom-left and right: statistics over 50 runs. There is no significant difference in the number of topology levels between the kidnapping and the non-kidnapping setup.
Figure 8. The information flow in our real-robot target tracking experiments.

Figure 9. The AR.Drones are equipped with a checkerboard and Vicon markers for relative sensing and ground truth poses, respectively. The forward-looking camera is tilted 45° downwards (highlighted by a red circle) to track the target and robots on lower levels of the sensing topology.
Figure 10. Experimental setup: the Microsoft Kinect camera is mounted on the ceiling and observes the Parrot AR.Drones. A TurtleBot 2 serves as a moving target that is tracked by the AR.Drones. The AR.Drones and the target are equipped with checkerboard markers. The state estimates are shown as blue arrows, the corresponding covariances are represented by blue ellipses. The commanded velocities are shown as orange arrows. Top: two AR.Drones tracking the target in a string topology. Bottom: two AR.Drones tracking the target in a flat topology.
the IMU and height information of the quadrotor, and in this way provides planar odometry for EKF state estimation in \(SE2 \). We modified the forward-looking camera to be tilted 45° downwards to track the target on the ground (see Fig. 9). A detailed graph of the information flow of our system is shown in Fig. 8.

The Kinect camera and the UAV front camera images provide 3D relative poses of observed markers. For operational simplicity, in our EKF implementation we consider the planar state pose \([x, y, \psi]^T \) (all measurements and the corresponding covariances are projected onto the XY-plane). Moreover, we estimate the position of the target as \([x, y]^T \). We send velocity control commands \(u^{(i)} = [v_x, v_y, \omega_z]^T \) to the \(i \)-th quadrotor, which are then internally converted to appropriate motor velocities given the IMU and visual odometry information. Compared to the simulation experiments, the quadrotor control optimization space includes the yaw (heading) velocity, which also accounts for the downward-tilted camera. While the simulation experiments are implemented with point robots with a symmetric circular field of view to demonstrate the capabilities and properties of our approach in an optimization space that enables an intuitive visualization, the quadrotor experiments show that our approach can deal with non-linearities and more complex real-world systems.

5.2. Calibration and Covariance Estimation

Odometry The visual odometry of the quadrotors is internally fused with IMU data and provides horizontal velocity measurements. This estimation system is factory-calibrated and does not require further calibration. We determine the covariance of the horizontal velocity measurement uncertainty using the ground truth motion that is extracted from the Vicon data. The covariance of the visual odometry follows from straightforward error statistics.

Marker Sensor The visual detection and pose estimation of checkerboard markers requires a careful intrinsic and extrinsic camera calibration. For the intrinsic calibration of all cameras, we use the ROS camera calibration package, which is based on OpenCV. In our extrinsic calibration procedure of the downward-tilted cameras of the quadrotors, we estimate the camera pose with respect to the robot base. We collect a series of marker pose measurements of a checkerboard marker that is equipped with additional Vicon markers. Using the ground truth poses of the robot base and the checkerboard, we can determine the relative 3D camera orientation in a least-squares minimization routine of the measurement errors. Since the camera position can be measured accurately, we only determine its orientation from recorded data. Furthermore, we determine the pose of the camera at the ceiling using a large checkerboard with additional Vicon markers on the floor.

In the second step, we use the same type of recorded data as for the extrinsic calibration to statistically determine the 3D position and orientation covariance of the marker pose measurements.

5.3. Height Stabilization

While the ultrasound altimeter provides accurate and reliable height measurement in single-robot experiments, the ultrasound sensors suffer from substantial crosstalk in multi-robot settings. This results in frequent measurement outliers that confuse the internal height estimation and stabilization of the AR.Drone and can cause serious crashes due to unpredictable height control behaviors.

A natural solution to this problem would be to trigger ultrasound measurements in an interleaved way. Since the AR.Drone low-level software is not open-source, we decided to implement a workaround using Vicon height estimates. In particular, we use a PD controller for determining vertical velocity commands to keep the robots at their desired height. It is worth noting that this is a limitation that is specific to our low-cost robots. There are several other platforms where onboard height estimation would not be an issue. Therefore, applying height stabilization using external height estimates for the AR.Drone robots does not violate the general onboard sensing framework presented in this paper.
Figure 11. Row (a) shows the results of an experiment with one robot tracking a moving target. Row (b) and (c) show target tracking of two robots (node 1 and node 2) in the flat and string sensing topology, respectively. Left: The error of the EKF position estimates and the trace of the EKF covariances of the individual robots and the target for the full trajectory. Right: An extract of the trajectory and the state estimates of the EKF. The actual trajectory is shown as thick dots connected by a solid line. The EKF means are indicated by ‘+’ and the covariances are shown as ellipses.
5.4. Results

We conducted a series of real robot experiments as a proof of concept of our approach. We started each experiment by controlling the robot manually. During all multi-robot experiments, the height stabilization controller was enabled. Once the EKF was initialized, the cooperative target tracking controller was turned on and took over control. We evaluated the performance of our method using Vicon ground truth poses recorded throughout the experiment (see Fig. 11). The plotted data show the whole period of the deployment of the robots. Compared to the simulation experiments, the collision-avoidance-related cost keeps the robots at a safe distance from each other and the 45° forward-looking camera results in an asymmetric field of view in the x-y plane such that the robots can often track the target by just appropriately changing their heading.

Insights and Limitations During the practical evaluation we encountered several challenges – the prodigal gap between simulation and reality. First, the system is highly influenced by the small field of view of the cameras, which results in tracking loss if an aggressive control command is executed. Second, the information about roll and pitch of the quadrotor received from the AR.Drone has a significant influence on the measurement projection. It introduces additional uncertainty in the EKF, which we account for via a first-order error propagation in the measurement projection.

Single-robot Experiment In a first experiment, we deployed a single robot to track a moving target. Although the target was moving extensively in all directions, the robot was able to behave stably (see the top row of Fig. 11). The robot stayed below the global camera, which resulted in high certainty of its position and it mostly changed its orientation such that its field of view followed the target. In this experiment we obtained the smallest position errors of the target and the robot.

Two-robot Experiment in Flat Topology The next experiment was performed with two robots in a flat topology (arranged on the same level) and a moving target. In this case node 2 started without having the target in its field of view. After the target was localized by node 1, node 2 was able to change its orientation to join tracking the target. One can notice higher uncertainty in the pose estimation of node 2 (see the middle row in Fig. 11), which was mainly caused by the small field of view of the global camera. In order to avoid collisions between two robots the repelling component of the cost function was introduced. However, in this experiment, the repelling force occasionally pushed node 2 out of the global camera view causing higher uncertainty in its position estimates.

Two-robot Experiment in String Topology The final experiment consisted of two robots in a string topology (one above the other) and a moving target. One can notice two peaks in the target position error (see the bottom row of Fig. 11) that correspond to the situation where the lower robot was pushed down by the air stream of the higher robot. Since the motors of the AR.Drones do not provide enough torque to compensate for strong air streams, the lower robot was substantially less stable. It is also worth noticing that although the target was lost, the system was able to recover and continue tracking.

6. Conclusions

We presented a probabilistic multi-robot control approach that considers onboard sensing and topology switching for target tracking. Our method generates locally optimal control while keeping polynomial complexity. We compared two measures of uncertainty, mutual information and the trace of the EKF covariance, and showed the superiority of the trace-based method in case of degenerate covariances. We evaluated our approach in a number of simulations and showed a proof of concept with the real robot experiments. Our approach flexibly adapts the topology and controls to the sensing limitations of the individual robots and the target movements even in the event of robot kidnapping. We presented the results of two topologies (flat and string) consisting of two AR.Drones, which demonstrated the robustness to the limited hardware
capabilities of these inexpensive platforms. The scalability of the approach crucially hinges on our ability to quickly search the space of sensing topologies. At present, we restrict this search using a neighbor topology heuristic. In the future, we plan to use our method on a more capable platform and further explore principled topology switching techniques that preserve scalability.

Acknowledgment

This work was supported in part by the National Science Foundation (CNS-1213128) and the Office of Naval Research (N00014-09-1-1031). Karol Hausman was supported by a fellowship from the USC Viterbi School of Engineering.

References

M. Valenti, B. Bethke, G. Fiore, J.P. How, and E. Feron. Indoor multi-vehicle flight testbed for fault detection, isolation, and recovery.

